Multi-Source Generation Mechanisms for Low Frequency Noise Induced by Flood Discharge and Energy Dissipation from a High Dam with a Ski-Jump Type Spillway
نویسندگان
چکیده
As excess water is discharged from a high dam, low frequency noise (air pulsation lower than 10 Hz, LFN) is generated and propagated in the surrounding areas, causing environmental hazards such as the vibration of windows and doors and the discomfort of local residents. To study the generation mechanisms and key influencing factors of LFN induced by flood discharge and energy dissipation from a high dam with a ski-jump type spillway, detailed prototype observations and analyses of LFN are carried out. The discharge flow field is simulated and analyzed using a gas-liquid turbulent flow model. The acoustic response characteristics of the air cavity, which is formed between the discharge nappe and dam body, are analyzed using an acoustic numerical model. The multi-sources generation mechanisms are first proposed basing on the prototype observation results, vortex sound model, turbulent flow model and acoustic numerical model. Two kinds of sources of LFN are studied. One comes from the energy dissipation of submerged jets in the plunge pool, the other comes from nappe-cavity coupled vibration. The results of the analyses reveal that the submerged jets in the plunge pool only contribute to an on-site LFN energy of 0-1.0 Hz, and the strong shear layers around the high-velocity submerged jets and wall jet development areas are the main acoustic source regions of LFN in the plunge pool. In addition, the nappe-cavity coupled vibration, which is induced when the discharge nappe vibrates with close frequency to the model frequency of the cavity, can induce on-site LFN energy with wider frequency spectrum energy within 0-4.0 Hz. By contrast, the contribution degrees to LFN energy from two acoustic sources are almost same, while the contribution degree from nappe-cavity coupled vibration is slightly higher.
منابع مشابه
Generation Mechanism and Prediction Model for Low Frequency Noise Induced by Energy Dissipating Submerged Jets during Flood Discharge from a High Dam
As flood water is discharged from a high dam, low frequency (i.e., lower than 10 Hz) noise (LFN) associated with air pulsation is generated and propagated in the surrounding areas, causing environmental problems such as vibrations of windows and doors and discomfort of residents and construction workers. To study the generation mechanisms and key influencing factors of LFN induced by energy dis...
متن کاملExperimental Study of the Effect of Gabion Structure on the Energy Dissipation of Submerged Hydraulic Jump Downstream of Ogee Spillway
In the last decade, the use of gabion structures in hydraulic engineering for stabilizing the structure due to its high density and weight has become widespread. Also, the material's roughness and porosity cause it to be used in energy dissipation and drainage projects. This study evaluates the relative energy dissipation of gabion structures downstream of the ogee spillway in the conditions of...
متن کاملThe Study of Energy Loss in Stepped- Labyrinth Spillways
A ‘spillway’ is a structure used to provide the controlled release of flood water from upstream into downstream area of a dam. As an important component of every dam, a spillway should be constructed strongly, reliably and efficiently to be used at any moment. Labyrinth and stepped spillways are presented as appropriate modifications to those spillways hardly capable of managing the maximum pot...
متن کاملExperimentally determination of discharge coefficients of Ogee spillway under axial arc condition with convergent lateral walls
A dam spillway is a hydraulic structure that appropriately and safely diverts the outflow to downstream, so that the dam stability and passing of flood flows can be guaranteed. Compared to straight crest spillway, an Ogee spillway with curvature in plan in a fixed-width can pass more flow. Therefore under the low hydraulic heads and the need for a smaller place in plane, they are considered as ...
متن کاملModel Investigations of Stepped Spillway
Stepped block protection has considerable potential as a low-cost method for the construction of chute spillways and the protection of embankments from erosion by overtopping flow. Stepped spillways are structurally stable, resistant to water loads and significantly increase the rate of energy dissipation on the spillway face thus eliminating or greatly reducing the need for a large energy diss...
متن کامل